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Why is predicting solar activity important?
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Forecasts of solar activity drive the models that protect lives and assets in space and
utilities on the ground? If those forecasts are wrong...

...It Is our mission to have high a “skill” as possible to protect these assets.
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Because, we live in the atmosphere of our Star!

We are dependent on it for almost everything...

we are also increasingly vulnerable to it...
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Rewind: Spots On The Sun

In the (very) early years of S feen ey
telescopic astronomy L
observers tracked dark

features crossing the solar

Needless to say there were
some pretty wild ideas

pushed out there to ‘explain’
what was being observed......

Keep observing (and counting) for many
decades....

Galileo Galilei
1613 A.D.
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Sunspot Number

Schwabe - 1844
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“Cyclic” Sunspot Evolution : Average period of about 11-Years

Except when there are NONE.
[ASIDE: Jack Eddy - The Sun continued to cycle even though there were no spots!]
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Maunder - 1904
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Breakthrough: “Butterfly”
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Rewind: Spots On The Sun

Hale - 1913-1919: Sunspots are magnetic objects

Hale - 1925: Sunspots obey a 22-year magnetic polarity law
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Fast-Forward: Spots On The Sun

Merged KSO/SIDC Hemispheric Sunspot Number
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SUNSPOT CYCLES ARE NOT SINUSOIDAL
CYLES MORE OFTEN THAN NOT DOUBLE PEAKED

HEMISPHERIC ACTIVITY NOT SYMMETRIC
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Fast-Forward: Spots On The Sun
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The Sun also has periods of enhanced spot formation on shorter timescales
[although maybe not enough time in these talks to discuss in detail :-( ]

The strongest space weather events occur during these “surges”
of sunspot production.
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250+ ‘predictions’ of sunspot cycle 25.....

Sunspot Area Coverage in 50 Equal Area Latitude Bands
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400+ years of measured sunspot number?
100+ years of the measured magnetic data
co potential solutions to the puzzle

what is the Sun doing?

Scott W Mclntosh [mscott@ucar.edu]
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Jump Forward
2020: NO

“Solar” / " ’ * Maximum

Scott W McIntosh [mscott@ucar.edu] X @swmcintosh



® The Sun has an 11(-ish) year sunspot cycle.

* Sunspots appear first at mid-solar
latitudes and migrate to the equator -
never crossing.

e This forms a butterfly pattern.
e The Sun has a 22(-ish) year magnetic
polarity cycle.
e The wings of the sunspot butterfly
alternate in dominant polarity.

e For reference the Earth’s magnetic poles
reverse every 200,000 years...

* The Sun experiences extended periods
where the number of spots can be very
large and times when there are almost no
spots!

e [t is our job to explain all of these features
self-consistently....... [and then predict the
future....]

X @swmcintosh



Driving Questions

How does the Sun’s internal
magnetic machine produce the
variability observed?

Can the magnetic machine be
observed?

Do models permit a reliable “forecast” of activity over hours,
days, weeks, months, years, decades (and centuries)?

What are the impacts of varying solar activity in deep space and
the near-Earth environment (and in the troposphere)?

Scott W Mclntosh [mscott@ucar.edu] @swmcintosh




How does the Sun’s magnetic
machine work?

X @swmcintosh



How do we think that the Sun’s
magnetic machine works?

Scott W Mcintosh [mscott@ucar.edu] X @swmcintosh



A magnetic kraken lurks beneath the surface!
We imply what It looks like through observation of its
tentacles.

\ NAR X @swmcintosh
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Tentacles.....

The Sun’s massive internal magnetic field dictates the time & location of magnetic
field eruption and hence sunspot production.

_ Scott W Mcintosh [mscott@ucar.edu] x @swmcintosh



ow do we think that the Sun’s
magnetic machine works?

0 ) ~ =2 Z % ‘.’ ;’

he surface!
bservation of its
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How do we think that the Sun’s
magnetic machine works?

A) Heat derived from nuclear fusion in the core heats the surrounding
hydrogen ‘ocean’. The outer portions of the hydrogen ocean convects.

B) The Sun rotates. The rotational forces create circulation and impact
the convection. The hydrogen ocean experiences ‘weather’

X @swmcintosh



How do we think that the Sun’s
magnetic machine works?

Magnetic Fleld Lines

Sunspot Pair

.....the convection, circulation and rotation intact to generate magnetic
fields. The magnetic fields strengthen and become buoyant, piercing the
Sun’s surface... appearing as sunspots and active regions (bipolar pairs
of spots)

X @swmcintosh



How do we think that the Sun’s
magnetic machi

Sunspots
150

100

A beautiful animation

[but is it correct?] | \ \
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A Warning.........

It is difficult to predict, especially
the future.

— iels Bohry —

AZ QUOTES

Scott W Mclntosh [mscott@ucar.edu] x @swmcintosh



A Warning.........

"t

Prediction is difficult-
particularly when it involves the

future.

~ Mark Twain

AZQUOTES Q/é

Scott W Mclntosh [mscott@ucar.edu] X @swmcintosh




Another Warning

Forecasting Goal: Understand the underlying physics well enough
to project what the system will do In the future......

“Observations”

Set of source Set of data
functions f functions ¢

Observe Spots = Infer Physics

[many “ideas” can produce the same “observations”]

Scott W Mclntosh [mscott@ucar.edu] @swmcintosh



Over the last three decades
our community has engaged in
the ultimate pursuit - to predict

what comes next!

With every iteration since our
understanding has improved and the
range of viable mechanisms have
reduced......

It has become the World Cup of
solar (and space weather) science.

Tij‘ \ NCAR X @swmcintosh
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Forecasting Sunspot Cycle 23
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Panel Achieves Consensus
Prediction of Solar Cycle 23

are considered in "Climatology (all)."

While four of the six techniques are in gen-
eral agreement, the panel gave the greatest
weight to precursor methods because they
have proven to be most successful for solar
activity predictions in the past. Precursor
methods use the concept of an "extended so-
lar cycle"—the idea that the imminent solar
cycle actually starts in the declining phase of
the previous cycle. In the declining phase
and at solar minimum, the coming cycle
manifests itself in structures such as coronal
holes and in the strength of the solar polar
magnetic field. High-speed solar wind
streams from low-latitude coronal holes give

N . e ! BN, rise to recurrent geomagnetic disturbances

) that are used to predict the strength of the
28 Forecasts Submitted next cycle [Thompson, 1993]. Precursor
methods invoke a solar dynamo concept in
which the polar field in the declining phase
and at minimum is the seed of future toroidal

Jo Ann Joselyn, Jeffrey B. Anderson, Helen Coffey, Karen Harvey,
David Hathaway, Gary Heckman, Ernie Hildner, Werner Mende,
¥  Kenneth Schatten, Richard Thompson, A. W. P. Thomson, and
§ Oran R. White

D ek - N PSS il -

o N ~

1 I . fields within the Sun that will cause solar activ-
P red ICtlve M eth Od S E m p I Oyed - ity [Schatten and Pesnell, 1993]. The hypothe-
1 b} sized dependence of future cycle activity on
* PreCU rsor MethOdS the solar polar field strength at cycle mini-

mum also explains why geomagnetic precur-
L sors serve as proxies for predicting the solar
E m p Irl Cal cycle—that is, a physical connection exists
between the polar field, coronal holes, the in-
terplanetary field, and geomagnetic activity.

CI | m atO | Ogy The prediction technique based on the

“Recent Climatology”

Neural Networks
“Spectral” Methods

Scott W Mclntosh [mscott@ucar.edu] @swmcintosh




The Precursor Method
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Joan Feynman [name sound familiar?] and others in the 1980s noticed a relationship
between the geomagnetic index at Earth at solar minimum and the magnitude of the
UPCOMING sunspot cycle at maximum.
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The Precursor Method
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Joan Feynman [name sound familiar?] and others in the 1980s noticed a relationship
between the geomagnetic index at Earth at solar minimum and the magnitude of the
UPCOMING sunspot cycle at maximum.
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The SC23 “Consensus” Forecast: Joselyn

Table 1. Combined Forecasts of Maximum Smoothed Sunspot Number for Classes of
Prediction Techniques, and the Consensus Forecast

Technique Low End of Range Maximum
240 - Even/Odd Behavior 165 235
Precursor 160
Spectral : 155
220 - Recent Climatology 125 185
Neural Networks 110 170
Climatology (all) 75 155
- Consensus:
200 Smoothed Monthly
Sunspot Number 130 190
180
5 .
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Fig. 2. The estimated profile for Cycle 23 of sunspot number and
10.7-cm solar flux.
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The SC23 “Consensus” Forecast: Joselyn_
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Fig. 2. The estimated profile for Cycle 23 of sunspot number and 2009
10.7-cm solar flux.
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Key Recommendation: Joselyn

s S A Sk b - NIRRTy P '.% - "' ST N e R i e e e u N S & 2

Prediction research should be supported.}
* o | Thescientific community should be encour- §

‘o> ¢ agedto develop a fundamental under- '

4y standing of the solar cycle that would

4| provide the physical—rather than empiri-

cal—Dbasis for prediction methods.

Scott W Mclntosh [mscott@ucar.edu] @swmcintosh
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There’s something to
the precursor
method.... store this
for later. Is it more
than just chance?
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Forecasting Sunspot Cycle 24

SILSO Sunspot Number
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Solar Phys (2008) 252: 209-220
DOI 10.1007/s11207-008-9252-2

Predictions of Solar Cycle 24

William Dean Pesnell

50+ Forecasts

Methods
* “Precursor” Methods

- Empirical
 Climatology

» “Recent Climatology”
* Neural Networks
 “Spectral” Methods

* Dynamo Models

2
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Solar Phys (2008) 252: 209-220
DOI 10.1007/s11207-008-9252-2

Predictions of Solar Cycle 24

Category Number  Average Range

William Dean Pesnell

All 54 117 £33 40-185
Climatology (C) 13 111 +36 40-185

-

50+ Forecasts

1 Recent climatology (R) 2 140+30  120-160 §

i Dynamo models (D) 3 131+45  80-168 }

Methods 3 ;
recursor- Viethods Neural network (N) 2 145 145-145 §

« Empirical Precursor (P) 22 124 + 30 70-180

Geomagnetic (mostly aa) 12 137 £ 20 111-180
aa 7 140 + 14 120-160
Ap 5 134 + 28 111-180

110 £ 30 70-175

88 +24 70-115

116 + 32 74-175

- Climatology

» “Recent Climatology”

Solar
Polar fields
Other solar

* Neural Networks
-« “Spectral” Methods

* Dynamo Models

Scott W Mclntosh [mscott@ucar.edu] @swmcintosh
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Figure 1 The predictions from Table 1, plotted in order of increasing predicted maximum for Cycle 24. The
prediction categories are color coded as in the top panel. The upper plot is the significance of the difference
from the climatological average of 115 + 40 for those predictions that included an error bar. The dashed

line shows the estimated “highly significant” level, which one prediction reaches. Two other predictions are
statistically significant at the 90% level.
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The SC24 “Consensus’” Forecast: Pesnell

Solar Cycle 24 Sunspot Number Prediction

Data Through 31 Mar 07
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Clette, F. et al. (2015) ‘Revision of the Sunspot Number(s)’, Space Weather, 13(9), pp. 529-530.
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Smoothed Monthly Values —— Manthly Values
Updated 2007 Apr 20 NOM/SEC Boulder,CO USA

Note! In 2015 SILSO produced a ‘revised sunspot number’ that significantly
Increased the monthly numbers. This plot is the OLD sunspot number series
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The SC24 “Consensus’” Forecast: Pesnell

Solar Cycle 24 Sunspot Number Prediction

Data Through 31 Mar 07
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Note! In 2015 SILSO produced a ‘revised sunspot number’ that significantly
Increased the monthly numbers. This plot is the OLD sunspot number series
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The SC24 “Consensus” Forecast: Pesnell
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Note! In 2015 SILSO produced a ‘revised sunspot number’ that significantly
Increased the monthly numbers. This plot is the OLD sunspot number series
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Forecasting Sunspot Cycle 25
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The Rise of the Physical Model

Incorporating the polar magnetic field variation and lessons learned for the SC25 World Cup,
new improved ‘physical’ numerical simulations are ready to show their predictive skKill.....

Toroidal Manetic Field

-20000-10000 +0 +10000 +20000
gauss

Poloidal Manetic Potential

%1 A0 +1 e - Sunspots
normalized units

150

.... and beautiful animation. https://svs.gsfc.nasa.gov/3521
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£ Solar Physics 4
£ DOIL 10.1007/eeeee-eee-see-cece-o E/

Progress in Solar Cycle Predictions: Sunspot Cycles
§ 24-25 in Perspective

Dibyendu Nandy?!:?

(© Springer eeee

i  Abstract ,
#  The dynamic activity of the Sun — sustained by a magnetohydrodynamic dynamo 80+ Forecasts
mechanism working in its interior — modulates the electromagnetic, particulate %

£ and radiative environment in space. While solar activity variations on short  j

¥ timescale create space weather, slow long-term modulation forms the basis of  § Methods
space climate. Space weather impacts diverse space-reliant technologies while § @ ”

space climate influences planetary atmospheres and climate. Having prior knowl-  § * “Precursor” Methods
edge of the Sun’s activity is important in these contexts. However, forecasting o
solar-stellar magnetic activity has remained an outstanding challenge. In this  § * Em plrlCaI
review, predictions for sunspot cycle 24 and the upcoming cycle 25 are summa-
| rized, and critically assessed. The analysis demonstrates that while predictions | . C||mato|ogy
I Dbased on diverse techniques disagree across solar cycles 24-25, physics-based
predictions for solar cycle 25 have converged and indicates a weak sunspot cycle  § o K . 9
£ 25. It is argued that this convergence in physics-based predictions is indicative  § Recent CIImatOIOgy
of progress in the fundamental understanding of solar cycle predictability. Based .
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Abstract

' The dynamic activity of the Sun — sustained by a magnetohydrodynamic dynamo 80+ Forecasts
& mechanism working in its interior — modulates the electromagnetic, particulate ,

£ and radiative environment in space. While solar activity variations on short |

§ timescale create space weather, slow long-term modulation forms the basis of  § Methods

space climate. Space weather impacts diverse space-reliant technologies while
space climate influences planetary atmospheres and climate. Having prior knowl-
edge of the Sun’s activity is important in these contexts. However, forecasting

! - Dynamo ‘Physical’ Models

§ solar-stellar magnetic activity has remained an outstanding challenge. In this  § In Three Classes:

i review, predictions for sunspot cycle 24 and the upcoming cycle 25 are summa- 8

| rized, and critically assessed. The analysis demonstrates that while predictions ] « Assimilative: Incorporating Polar
4 based on diverse techniques disagree across solar cycles 24-25, physics-based — § Field

predictions for solar cycle 25 have converged and indicates a weak sunspot cycle
& 25. It is argued that this convergence in physics-based predictions is indicative  § » Surface Flux Transport
of progress in the fundamental understanding of solar cycle predictability. Based * Full Magneto Hyd ro Dynamics (MHD)
on this understanding, resolutions to several outstanding questions related to
solar cycle predictions are discussed.
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SOLAR CYCLE 25 PREDICTIONS
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Figure 3. Predictions of solar cycle 25 by different groups based on diverse methodologies
(indicated in the plot and represented through distinct colour bars). The height of the bars
indicate the predicted peak strength (scaled to conform to the new, revised sunspot time series).
The mean (£ 1) of all cycle 25 predictions is 135.88 £ 39.27 (SSN). The dashed line denotes
the observed peak of solar cycle 24 (113.3 SSN in the revised scale) for comparison. Details
of the utilized methodologies can be found in the references cited below the corresponding
predictions; these are available in the bibliography.
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The SC25 “Consensus” Forecast (2020)

https://www.swpc.noaa.gov/products/solar-cycle-progression
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Nandy et al. consensus prediction

Timing of minimum: 2019.5 - 2020.75

Timing of maximum: 2023 - 2026

Strength similar to Cycle 24

Range of Predicted Sunspot Maximum: 95-130

Scott W Mclntosh [mscott@ucar.edu] @swmcintosh



* The Sun has an 11(-ish) year sunspot cycle.

e Sunspots appear first at mid-solar
latitudes and migrate to the equator -
never crossing.

e This forms a butterfly pattern.
* The Sun has a 22(-ish) year magnetic
polarity cycle.
e The wings of the sunspot butterfly
alternate in dominant polarity.

e For reference the Earth’s magnetic poles
reverse every 200,000 years...

e The Sun experiences extended periods
where the number of spots can be very
large and times when there are almost no
spots!

e Surges of sunspot production give rise to
the strongest space weather events.

e Predicting the sunspot cycle amplitude,
timing and shape is not easy.

e Those predictions drive a host of other
operational forecasts so this really is not an
academic game.

® Precursor methods seem to be more robust
than ‘physical’ models in predicting sunspot
cycles 23 and 24 amplitude.

e Reproducing the shape and timing of
the sunspot cycles are not great!

e “Sunspot Cycle 25 will have the same (or
smaller) magnitude as Sunspot Cycle 24 and
reach maximum in July of 2025.”

e Now for some coffee....

X @swmcintosh
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