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The beginning
- In 1864 James Clerk Maxwell published a theory of electromagnetic waves

- In 1899 Guglielmo Marconi invented the first radio telegraph
system sending signals across the English Channel.

- At Signal Hill (Canada) on December 12, 1901,

Guglielmo Marconi and his assistant, George Kemp,

confirmed the reception of the first transatlantic radio signals.
With a telephone receiver and a wire antenna

kept aloft by a kite, they heard Morse code

for the letter "S" transmitted from Poldhu, Cornwall (UK).

- Guglielmo Marconi was awarded the Nobel Prize in Physics in 1909



The ionosphere

Marconi demonstrated that radio transmission was not bounded by the horizon, thus prompting Arthur
Kennelly and Oliver Heaviside to suggest, shortly thereafter, the existence of a layer of ionized air in
the upper atmosphere (the Kennelly-Heaviside layer, now called the ionosphere)

Scientists did not experimentally prove the existence of this atmospheric layer until 1924, thanks to
research into the movement of radio signals in the ionosphere by British scientist Edward V. Appleton.

T

Edward V. Appleton he received the Nobel Prize in Physics in 1947




The Photo-lonization Process
« Start with Neutral Atmosphere
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Thus, Photon (910 A) + O » O* +e-
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Production Function (P)
for monochromatic 1onizing radiation
(called "Chapman Theory")

How should P(h) look?
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For a complete model of Photo-lonization, the flux of solar photons at all relevant As is
needed: ion

F)Total (h) = Z qun (h) "Oion (ﬂ“) ) [N(h)]

A=0
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lonospheric Transformations

« What does “production only” imply?
e.g., use P(O%)

P« =4000¢ /cm’/sec x 3 hours (=10* sec)

m

gives N .. ~4x107¢ / cm’® Never Measured!!!

Message: Something happens to these ions and electrons!!!

/ Plasma recombination
Answer: Chemistry
\

Neutral-Plasma Processes



CASE # 1: Atomic ions + electrons

Ot+e- —> O [very rare due to precise energetics
needed for electron capture]

CASE # 2: Molecular ions + electrons

O,"+e- ——> 0+0 [fast due to excess energetics
used for dissociation]

CASE #3: Transform Atomic ions to Molecular ions

. INS |k NO* N

O + —> + (slow)
0 o 0

_ _

followed by
CASE #2 (quick)

The 2-stage recombination process governed by slower step, e.g.,

dN
e = —K[N,]N_ =—gN
dt [Z]e ﬂe




Messages from Simple Photochemical Theory

*Plasmas should be ionized form of dominant neutral

h4 N\, —> CASE#1:0+ e
\

» \ — CASE#2:0," + &

* O, N, + e

4
[Neu,’{'/l’a ,5]
*The actual case:
— some chemical transformations to form NO*and H*

« Two main layers: F-layer and E-layer
(EUV) (X-rays)
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Some D-layer Characteristics

About 60 to 90 km altitude

Tends to absorb the lower radio frequencies (<3 MHz)

Production is mainly due to solar Lyman alpha (121.567 nm) ionization of nitric oxide (NO) and
to X-rays ionization of molecular N2 and O2.

Molecular ions react with water vapour to produce water vapour cluster ions.

Electrons rapidly recombine with water vapour ions cluster causing a loss of ionization

D-layer rapidly disappears few minutes after dusk due to rapid recombination

lonospheric
Layers
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Some E-layer Characteristics

In regions of a dense neutral atmosphere (h <150 km) all ions are molecular (rapid
chemistry) and the ions + electrons stay where produced (too many collisions to
move away)

Example of diurnal behavior
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The E-layer is controlled by the Sun’s flux and its position ( dec + %)



Photochemistry-Plus-Dynamics

Some F-layer Characteristics
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The F-layer is produced by sunlight BUT its behavior
does not follow x5 = “Anomalies”

- Winter anomaly
- Annual anomaly
- Semi-annual anomaly
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To characterize the condition of the ionosphere the scientists use mainly two key parameters:

« The F2-layer peak electron density NmF2 (1012 electrons/m3)
» The Total Electron Content (TEC) defined as is the total number of electrons present along a path between a radio transmitter
and receiver (1 TEC Unit TECU = 1016 electrons/m?)
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lonospheric variability

Regular (mostly predictable) variability
Irregular (mostly unpredictable) variability
Sometimes it is not easy to catalogue the variability as only regular or irregular

Variations

Quiet and disturbed variability vs height

Quiet and disturbed variability vs latitude
lonospheric
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11-years solar activity and space weather variability
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ACTIVITY Variability induced by existence of geomagnetic field and by space weather




Regular (mostly predictable) variability

Variations
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Tec (TECU)

11-years solar activity variability

The Sun exhibits a ~ 11-years variability
identified by the number of sunspots (SSN)

TEC variation along ~ 2 solar cycle shows
A very nice agreement with the solar
activity
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Greater F2-layer peak density (NmF2) values in the winter hemisphere than in the summer hemisphere

Seasonal variability: winter anomaly

the solstices. Berkner et al. (1936)
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Fig. 3. Maps for the N, F, winter anomaly intensity distribution from Pavlov and Pavlova (2012) (a)—(c) and from the RO measurements
(d)—(f), as well as the longitudinal variation of the N,,F, winter anomaly intensity averaged at 40—60° geographic latitudinal bands based on
the RO data (g)—(1). Panels (a, d, g) correspond to low solar activity; (b), (e), (h) correspond to moderate solar activity; and (c), (f), (i) display
high solar activity. White color on panels (d)—(f) shows the regions, for which the winter/summer ratio is less than 1. Bold gray curves (a)—(f)
are the geomagnetic equator and £15° geomagnetic latitudes.
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Seasonal variability: semi-annual anomaly

F2-layer peak density (NmF2) is greater at equinox than at solstice
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Seasonal variability: Annual anomaly

Greater F2-layer peak density (NmF2) at global level during December solstice than June solstice
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Daily variability

Electron density also varies between night and day mainly due to lack of photoionization process and changes in upper atmosphere dynamics
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What else causes Vertical Motions? Roles of Magnetic Field

Neutral Winds (U,,) are horizontal
Plasma constrained to move || B

>

Um

Vz=V, sinI
=UmcosI sinI

S/ /7777777 77777777777 /7777777777777

Middle Latitudes — maximum effect
Equatorial Latitudes (I = 0°) — small effect } Unless Uy, generates
High Latitudes (I = 90°) — small effect polarization |E-field



Electrodynamics: Motions caused by induced or penetrating E -fields
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12 MLT

Northern Hemisphere
12 MLT

12 MLT

Pettigrew, E. D. et al., 2010

Bz < 0 (under shielding) the electric potential
enhances;

By drives the shape of the convection cell
impacting on the formation of the ionospheric
irregularities (Polar cap patches, TOI)

GPS ATEC

A TEC (TECU)

-6 0 6




From Chapman theory is expected that the electron density maximizes over the geographic equator at
equinox. Actually, the maximum is reached 10°-20° off equator in both hemisphere with a minumum at the
magnetic equator. The reason is the combine effect of the electric and geomagnetic field: the fountain effect




At equatorial latitudes the electric field is dawn to dusk (i.e. eastward in dayside and westward in
nightside) while magnetic field is meridional (S to N)

ExB results in an uplift of the ionospheric plasma in the dayside.
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In analogy with the fluid Rayleigh-Taylor instability, bottomside plasma is unstable to perturbations
(density gradients against gravity).

Plasma irregularities start at large scale (100 km) and cascade at small scale (<1 m)
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Irregular (mostly unpredictable) variability

Variations

lonospheric
Parameters

Electron and lon
Density
Electron and lon
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Dynamics S
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ACTIVITY

lonospheric variability

disturbed variability vs height

disturbed variability vs latitude

storm time variability

space weather variability
ACTIVITY

Variability induced by space weather



lonospheric irregular variability = presence of irregularities: regions of uneven electron density distribution

* Neutral atmosphere variability

« Earthquake, volcanic and tsunami events
« Eclipses

« Anthropogenic sources

« Space weather events

Space Weather
Impacts on Earth
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From Jin et al., 2015 (adapted from Kamogawa, 2004)



The ionospheric electron density and the height can be derived from radio probing (ground and space-
based) exploiting the i1onosphere property of influencing the radio wave propagation (by working
frequencies spanning from kHz to GHz range).
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GPS signals

VHF, HF radars and receivers provide several
information on plasma structuring and variability
but the devices are sparse and offer poor
coverage (in time and space)

L-band (eg. GNSS) is a very
powerful diagnostic tool but often
does not provide a complete
picture in time and space




Multi-sensor observation

Bottom-side ionosphere

In-situ information of : .
: : - Equatorial Electrojet
information the topside ionosphere
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The study of the ionospheric irregularities from the GNSS perspective 4

Courtesy
Univ. Of Bath

Courtesy NASA

Solar Wind-Magnetosphere coupling causes
turbulences of the ionosphere

Gradients of the electron density Scintillation: phase and amplitude sudden

. fluctuations of the trans-ionospheric e.m. wave
Large range of spatial and temporal scales



The study of the ionospheric irregularities from the GNSS perspective

lonospheric scintillations: sudden and rapid fluctuations of phase and amplitude of the GNSS signals triggered
by ionospheric plasma irregularities due to the diffraction of the signal.

! GNSS 1 / GNSS 2
/
K
1

lonosphere

If the signal meets the “irregularities of
the ionosphere" the signal may
“Scintillate"

How to monitor
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What about the irregularities scale-size triggering scintillations on GNSS signals?

Amplitude scintillation:

Diffraction triggered by small-scale
iIrregularities

What does “small” means?
ve: Fresnel’s Frequency vp = -
VREL: relative velocity ray-path-ionosphere
de=sqrt(2*A*h pp)

A~19 cm for Ll,Iassuming Npp = 350 km

de is about 250 m

Log(PSD)

S4 o [(PSDgmp)dv

Small for GNSS signals: !
scale-sizes up to hundreds of VFresnel Nyauist

Log(v)
meters



The study of the ionospheric irregularities

e
\?\\\‘ Credits: NASA

100 1 km 10 km 100 km 1000 km
m
*Small scale *Medium scale *Large scale

(Fresnel's scale)
*from a GNSS perspective



The Mother’s day storm effect on the TEC over ltaly

TECU
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The Mother’s day storm:
scintillations recorded in the
Mediterranean area

A strong plasma bubble event
on 10 May has been recorded

up to Catania (lat: 37.7°N)!
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